Complete this packet over the summer (DO NOT complete it all during the month of June . . . it will defeat the purpose of the packet). You will be tested on this information during the first week of school. If you have questions, you can e-mail me: kgrossi@umtsd.org, I will check my e-mail occasionally throughout the summer.

PART 1: POLYNOMIALS. You should be able to factor polynomials, simplify rational expressions, and divide polynomials.

Factor completely.

1.
$$x^2 - 8x + 12$$

2.
$$x^2 + 7x - 30$$

3.
$$3x^2 - 24x - 60$$

4.
$$2x^2 - 5x - 12$$

5.
$$6x^2 + 17x + 5$$

6.
$$24x^2 + 2x - 12$$

Simplify each rational expression. SHOW YOUR WORK.

7.
$$\frac{x^2 + 3x - 10}{2x^2 + 9x - 5}$$

8.
$$\frac{x^2 + 10x + 16}{x^2 + 5x - 24}$$

$$9. \ \frac{3x^2 - 75}{x^2 + 8x + 15}$$

Use generic rectangles to divide the polynomials.

10.

$$(x^4 - x^3 - 4x^2 + 8x + 8) \div (x + 2)$$

11.

$$(4x^3 + 4x^2 - 7x - 6) \div (2x + 3)$$

Divide the following polynomial functions using generic rectangles AND using long division.

12.
$$\frac{2x^3 + 4x^2 - 6x + 6}{2x + 1}$$

<u>PART 2: DOMAIN AND RANGE</u>. You should be able to identify the domain and range of a function both algebraically (without a calculator) and graphically.

DOMAIN: The domain of a function is the set of x-values that can be inputted into a function, so yield a y-value. To find the domain of a function, ask yourself what values CANNOT be used.

- The domain of all **polynomial functions** is ALL REAL NUMBERS, because you can raise any number to an whole number exponent and you can add, subtract, and multiply all numbers.
- You cannot take the **square root** of a negative number, so when dealing with a square root, you know that whatever is under the radical must be greater than or equal to zero.
- You are NEVER allowed to divide by zero, so we know that the denominator of a **rational function** cannot equal zero.
- You cannot take the log of a negative number, so we know that when we have a logarithmic function, whatever we take the log of must be greater than or equal to zero.

RANGE: The range is the resulting outputs or y-values. To find the range of a function, think about what the function looks like (general shape and starting point or shifts); also consider what is happening in the function and what that does to the problem (EX: when you square a positive or negative number, your answer always turns positive).

INTERVAL and SET NOTATION: When identifying your domain and range, you should write your answer in interval or set notation.

INTERVAL NOTATION: Interval notation uses parentheses () and brackets []. A parentheses indicates that the number next to it is NOT included while a bracket indicates that the number next to it IS part of the domain or range.

<u>SET NOTATION</u>: Set notation is good to use when your domain or range is a list of numbers or a set of numbers on an interval. For domain, it would look like: {x: x>5}. Range would look similar, except with y's instead of x's.

EX: The range is all numbers between 3 and 7 (including 3, but not including 7).

INTERVAL NOTATION: [3, 7) SET NOTATION: $\{y: 3 \le y < 7\}$

Identify the domain and range of each function. When given an equation for the function, you MUST show algebraic work (not a sketch of the graph) to justify your answer.

13.

14.

15.

Domain:

Range : _____

Range:

Domain:

Range:

16.

17.

18.

Domain:

Range : _____

Domain:

Range : _____

Domain:

Range : _____

19.
$$f(x) = \sqrt{x+2} + 3$$
 20. $f(x) = \frac{x+1}{x-2}$

20.
$$f(x) = \frac{x+1}{x-2}$$

21.
$$f(x) = -(x+3)^2 - 2$$

Domain:	

Domain:

Range : _____

Domain: Range:

22. f(x) = -|x-5| + 6 **23.** $f(x) = \frac{x}{\sqrt{2x+3}}$

23.
$$f(x) = \frac{x}{\sqrt{2x+3}}$$

24. $f(x) = 2x^2 + 4x - 6$

Domain : _____

Domain:

Range : _____

Range:

Range:

PART 3: EVALUATING FUNCTIONS and COMPOSITE FUNCTIONS. You can use your calculator to evaluate a function, but you should be able to evaluate a function by hand as well.

EVALUATING FUNCTIONS: f(x) is used to write a function in function notation (instead of y=). If f(x) = 3x - 2, then f(5) means evaluate f(x) for x = 5.

EX:
$$f(x) = 2x + 5$$

$$g(x) = \sqrt{x}$$

Find
$$f(8)$$
.

$$f(8) = 2(8) + 5 = 16 + 5 = 21$$

Find
$$f(g(x))$$
.

Find
$$f(8)$$
. $f(8) = 2(8) + 5 = 16 + 5 = 21$
Find $f(g(x))$. $f(g(x)) = 2(\sqrt{x}) + 5 = 2\sqrt{x} + 5$

COMPOSITE FUNCTIONS: With composite functions, you combine two functions by taking the output of one function and making it the input of the other function.

EX:
$$f(x) = 2x + 5$$

$$g(x) = \sqrt{x}$$

Find
$$f(g(9))$$
.

$$g(9) = \sqrt{9} = 3$$

 $f(g(9)) = 2(3) + 5 = 11$

Evaluate each function. SHOW YOUR WORK.

$$f(x) = 2x - 1$$

$$g(x) = x^2 - 4$$

$$h(x) = \frac{2x}{x+1}$$

25. Find
$$f(-3)$$
.

26. Find
$$f(g(5))$$
.

27. Find
$$g(-4)$$
.

Evaluate each function. SHOW YOUR WORK.

$$f(x) = 2x - 1$$

$$f(x) = 2x - 1$$
 $g(x) = x^2 - 4$

$$h(x) = \frac{2x}{x+1}$$

- **28.** Find h(f(x)).
- **29.** Find g(f(x)).
- **30.** Find g(x + 3).

- **31.** Find f(x + 7).
- **32.** Find h(2a + b).
- **33.** Find $g(x + \Delta x)$.

PART 4: EXPONENTS. In Algebra 1, you learned how to get rid of negative exponents. In Algebra 2, you learned about fractional exponents. Rewrite each expression using negative or fractional exponents.

34.
$$y = \frac{3}{r^5}$$

35.
$$y = \frac{2}{3x}$$

36.
$$y = \frac{4}{x^2} + 3x - \sqrt{x}$$

37.
$$y = \sqrt{4x - 1}$$

38.
$$y = \sqrt[5]{(x+1)^3}$$

39.
$$y = (\sqrt{x})^3$$
 Write with a

single exponent.