Complete this packet over the summer (DO NOT complete it all during the month of June it will defeat the purpose of the packet). You will be tested on this information during the first week of school. If you have questions, you can e-mail me: kgrossi@umtsd.org, I will check my e-mail occasionally throughout the summer.

PART 1: POLYNOMIALS. You should be able to factor polynomials, simplify rational expressions, and divide polynomials.

Factor completely.

1. $x^{2}-8 x+12$
2. $x^{2}+7 x-30$
3. $3 x^{2}-24 x-60$
4. $2 x^{2}-5 x-12$
5. $6 x^{2}+17 x+5$
6. $24 x^{2}+2 x-12$

Simplify each rational expression. SHOW YOUR WORK.
7. $\frac{x^{2}+3 x-10}{2 x^{2}+9 x-5}$
8. $\frac{x^{2}+10 x+16}{x^{2}+5 x-24}$
9. $\frac{3 x^{2}-75}{x^{2}+8 x+15}$

DIVIDING FRACTIONS

Use generic rectangles to divide the polynomials.
10.

$$
\left(x^{4}-x^{3}-4 x^{2}+8 x+8\right) \div(x+2)
$$

11.

$$
\left(4 x^{3}+4 x^{2}-7 x-6\right) \div(2 x+3)
$$

Divide the following polynomial functions using generic rectangles AND using long division.
12. $\frac{2 x^{3}+4 x^{2}-6 x+6}{2 x+1}$

PART 2: DOMAIN AND RANGE. You should be able to identify the domain and range of a function both algebraically (without a calculator) and graphically.

DOMAIN: The domain of a function is the set of x-values that can be inputted into a function, so yield a y-value. To find the domain of a function, ask yourself what values CANNOT be used.

- The domain of all polynomial functions is ALL REAL NUMBERS, because you can raise any number to an whole number exponent and you can add, subtract, and multiply all numbers.
- You cannot take the square root of a negative number, so when dealing with a square root, you know that whatever is under the radical must be greater than or equal to zero.
- You are NEVER allowed to divide by zero, so we know that the denominator of a rational function cannot equal zero.
- You cannot take the log of a negative number, so we know that when we have a logarithmic function, whatever we take the log of must be greater than or equal to zero.

RANGE: The range is the resulting outputs or y-values. To find the range of a function, think about what the function looks like (general shape and starting point or shifts); also consider what is happening in the function and what that does to the problem (EX: when you square a positive or negative number, your answer always turns positive).

INTERVAL and SET NOTATION: When identifying your domain and range, you should write your answer in interval or set notation.

INTERVAL NOTATION: Interval notation uses parentheses () and brackets []. A parentheses indicates that the number next to it is NOT included while a bracket indicates that the number next to it IS part of the domain or range.

SET NOTATION: Set notation is good to use when your domain or range is a list of numbers or a set of numbers on an interval. For domain, it would look like: $\{x: x>5\}$. Range would look similar, except with y 's instead of x 's.

EX: The range is all numbers between 3 and 7 (including 3, but not including 7).

Identify the domain and range of each function. When given an equation for the function, you MUST show algebraic work (not a sketch of the graph) to justify your answer.
13.

Domain :
Range : \qquad
16.

Domain : \qquad
Range : \qquad
19. $f(x)=\sqrt{x+2}+3$

Domain : \qquad
Range : \qquad
14.

Domain : \qquad
Range : \qquad
17.

Domain: \qquad
Range : \qquad
20. $f(x)=\frac{x+1}{x-2}$

Domain: \qquad
Range : \qquad
15.

Domain : \qquad
Range : \qquad
18.

Domain : \qquad
Range : \qquad
21. $f(x)=-(x+3)^{2}-2$

Domain : \qquad
Range : \qquad
22. $f(x)=-|x-5|+6$
23. $f(x)=\frac{x}{\sqrt{2 x+3}}$
24. $f(x)=2 x^{2}+4 x-6$

Domain : \qquad
Range : \qquad

Domain : \qquad
Range : \qquad

Domain : \qquad
Range : \qquad

PART 3: EVALUATING FUNCTIONS and COMPOSITE FUNCTIONS. You can use your calculator to evaluate a function, but you should be able to evaluate a function by hand as well.

EVALUATING FUNCTIONS: $f(x)$ is used to write a function in function notation (instead of $\mathrm{y}=)$. If $f(x)=3 x-2$, then $f(5)$ means evaluate $f(x)$ for $x=5$.

EX: $\quad f(x)=2 x+5$
$g(x)=\sqrt{x}$
Find $f(8)$.
$f(8)=2(8)+5=16+5=21$
Find $f(g(x)) . \quad f(g(x))=2(\sqrt{x})+5=2 \sqrt{x}+5$

COMPOSITE FUNCTIONS: With composite functions, you combine two functions by taking the output of one function and making it the input of the other function.

EX: $\quad f(x)=2 x+5 \quad g(x)=\sqrt{x}$
Find $f(g(9))$.

$$
\begin{gathered}
g(9)=\sqrt{9}=3 \\
f(g(9))=2(3)+5=11
\end{gathered}
$$

Evaluate each function. SHOW YOUR WORK.

$$
f(x)=2 x-1 \quad g(x)=x^{2}-4 \quad h(x)=\frac{2 x}{x+1}
$$

25. Find $f(-3)$.
26. Find $f(g(5))$.
27. Find $g(-4)$.

Evaluate each function. SHOW YOUR WORK.

$$
f(x)=2 x-1 \quad g(x)=x^{2}-4 \quad h(x)=\frac{2 x}{x+1}
$$

28. Find $h(f(x))$.
29. Find $g(f(x))$.
30. Find $g(x+3)$.
31. Find $f(x+7)$.
32. Find $h(2 a+b)$.
33. Find $g(x+\Delta x)$.

PART 4: EXPONENTS. In Algebra 1, you learned how to get rid of negative exponents. In Algebra 2, you learned about fractional exponents. Rewrite each expression using negative or fractional exponents.
34. $y=\frac{3}{x^{5}}$
35. $y=\frac{2}{3 x}$
36. $y=\frac{4}{x^{2}}+3 x-\sqrt{x}$
37. $y=\sqrt{4 x-1}$
38. $y=\sqrt[5]{(x+1)^{3}}$
39. $y=(\sqrt{x})^{3}$

