Graphical Analysis

Chapter 1 deals with functions and their graphical characteristics. To facilitate a study of functions, it is important to visualize mentally the graph of a function when given an algebraic description.

1. Graph each function. Clearly indicate units on the axes provided.

$$(\mathbf{a}) \qquad f(x) = x^2$$

(b)
$$f(x) = x^3$$

(c)
$$f(x) = |x|$$

$$(\mathbf{d}) \quad f(x) = \sin x$$

(e)
$$f(x) = \cos x$$

 $f(x) = \sqrt{x}$

$$(\mathbf{f}) \quad f(x) = \tan x$$

$$(\mathbf{g}) \quad f(x) = \sec x$$

$$(i) f(x) = \log_2 x$$

$$(\mathbf{j}) \qquad f(x) = \frac{1}{x}$$

(k)

(1)
$$f(x) = \sqrt{a^2 - x^2}$$

2. Answer the following questions about the indicated functions. In completing the table below, you may use the following abbreviations, *R*: the set of real numbers, *J*: the set of integers, and *N*: the set of natural numbers. Note: This exercise may need to be done as appropriate sections of Chapter 1 are completed.

Function	Domain	Range $y = f(x)$	Zeros (Find x when $f(x) = 0$)	Symmetry with respect to y-axis or origin	Even or Odd Function— $f(-x) = f(x)$ or $f(-x) = -f(x)$	Is the function periodic? If so, state the period.	Is $f(x)$ a one-to-one function? (For each $f(x)$ only one x exists.)
$\mathbf{(a)} f(x) = x^2$							
$\mathbf{(b)} f(x) = x^3$							
(c) f(x) = x							
$(\mathbf{d}) f(x) = \sin x$	231 = CV N	(6)		60 = (6)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1	1	
(e) $f(x) = \cos x$							
$(\mathbf{f}) f(x) = \tan x$							
$(\mathbf{g}) f(x) = \sec x$							
$(\mathbf{h}) f(x) = 2^x$	al = (1.1)	(4)		S= 50 I		= 302 = 133 <u>\</u> .	
$(i) f(x) = \log_2 x$							
$(\mathbf{j}) f(x) = \frac{1}{x}$							
$\mathbf{(k)} f(x) = \sqrt{x}$		(3)			Ď.	1	(2)
(1) $f(x) = \sqrt{a^2 - x^2}$							

Concept Connectors

3. Is there a relationship between symmetry in a function's graph and the function being even or odd? Explain.

4. Draw a reflection of (a) $f(x) = \cos x$, (b) $f(x) = 2^x$, and (c) $f(x) = \sqrt{x-1}$ through the x-axis.

5. Draw a reflection of (a) $f(x) = \cos x$, (b) $f(x) = 2^x$, and (c) $f(x) = \sqrt{x-1}$ through the y-axis.

